Data Visualization with Python Training

Nivå: Intermediate
Snittbetyg: 4,5/5 4,50/5 Based on 14 Reviews

With so much data being continuously generated, developers with a knowledge of data analytics and data visualisation are always in demand. In this Data Visualisation with Python course, you'll learn how to use Python with NumPy, Pandas, Matplotlib, and Seaborn to create impactful data visualisations with real world, public data.


  • After-course instructor coaching benefit
  • After-course exam included

Du kommer lära dig att:

  • Understand and use various plot types with Python.
  • Explore and work with different plotting libraries.
  • Understand and create effective visualisations.
  • Improve your Python data wrangling skills.
  • Work with industry-standard tools like Matplotlib, Seaborn, and Bokeh.
  • Understand different data formats and representations.

Välj den utbildningsform som passar dig bäst


I klass & Live, Online-utbildning

  • 3-day instructor-led training course
  • One-on-one after-course instructor coaching
  • Pay later by invoice -OR- at the time of checkout by credit card



  • Använd denna eller någon annan utbildning i ditt företag
  • Fullskalig programutveckling
  • Levereras när, var och hur du vill
  • Blandade utbildningsmodeller
  • Skräddarsytt innehåll
  • Coaching av ett expertteam

Anpassa kurs och innehåll efter teamets behov

Kontakta oss

Utveckla dig och ditt team med anpassade eller öppna kurser alternativt e-learning

Learning Tree erbjuder kundanpassad utbildning hos er, öppna kurser i Stockholm, London eller Washington, möjlighet att delta via våra Anywhere centers (Malmö, Göteborg, Linköping, Stockholm eller Borlänge) eller olika former av e-learning med lärarstöd. Läs mer på .

I klass & Live, Online-utbildning

Note: This course runs for 3 dagar

  • 13 - 15 jul 9:00 - 4:30 BST Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 19 - 21 okt 9:00 - 4:30 BST Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 19 - 21 maj 9:00 - 4:30 EDT Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 1 - 3 sep 9:00 - 4:30 EDT Ottawa / Online (AnyWare) Ottawa / Online (AnyWare) Boka Din Kursplats

  • 8 - 10 nov 9:00 - 4:30 EST Herndon, VA / Online (AnyWare) Herndon, VA / Online (AnyWare) Boka Din Kursplats

  • 9 - 11 mar 9:00 - 4:30 EST Ottawa / Online (AnyWare) Ottawa / Online (AnyWare) Boka Din Kursplats

Kurs med startgaranti

När du ser symbolen för “Guaranteed to Run” vid ett kurstillfälle vet du att kursen blir av. Garanterat.

Data Visualisation with Python Training Information

  • Who Should Attend

    Data Visualisation with Python is designed for developers and scientists, who want to get into data science or want to use data visualisations to enrich their personal and professional projects. You do not need any prior experience in data analytics and visualisation, however, it'll help you to have some knowledge of Python and familiarity with high school level mathematics. Even though this is a beginner level course on data visualisation, experienced developers will be able to improve their Python skills by working with real-world data.

Data Visualisation with Python Training Outline

  • Lesson 1: Importance of Data Visualisation and Data Exploration

    • Topic 1: Introduction to data visualisation and its importance
    • Topic 2: Overview of statistics
      • Activity 1: Compute mean, median, and variance for the following numbers and explain the difference between mean and median
    • Topic 3: A quick way to get a good feeling for your data
    • Topic 4: NumPy
      • Activity 1: Use NumPy to solve the previous activity
      • Activity 2: Indexing, slicing, and iterating
      • Activity 3: Filtering, sorting, and grouping
    • Topic 5: Pandas
      • Activity 1: Repeat the NumPy activities using pandas, what are the advantages and disadvantages of pandas?
  • Lesson 2: All You Need to Know About Plots

    • Topic 1: Choosing the best visualisation
    • Topic 2: Comparison plots
      • Line chart
      • Bar chart
      • Radar chart
      • Activity 1: Discussion round about comparison plots
    • Topic 3: Relation plots
      • Scatter plot
      • Bubble plot
      • Heatmap
      • Correlogram
      • Activity 1: Discussion round about relation plots
    • Topic 4: Composition plots
      • Pie chart
      • Stacked bar chart
      • Stacked area chart
      • Venn diagram
      • Activity 1: Discussion round about composition plots
    • Topic 5: Distribution plots
      • Histogram
      • Density plot
      • Box plot
      • Violin plot
      • Activity 1: Discussion round about distribution plots
    • Topic 6: Geo plots
    • Topic 7: What makes a good plot?
      • Activity 1: Given a small dataset and a plot, reason about the choice of visualisation and presentation and how to improve it
  • Lesson 3: Introduction to NumPy, Pandas, and Matplotlib

    • Topic 1: Overview and differences of libraries
    • Topic 2: Matplotlib
    • Topic 3: Seaborn
    • Topic 4: Geo plots with geoplotlib
    • Topic 5: Interactive plots with bokeh
  • Lesson 4: Deep Dive into Data Wrangling with Python

    • Topic 1: Matplotlib
    • Topic 2: Pyplot basics
    • Topic 3: Basic plots
      • Activity 1: Comparison plots: Line, bar, and radar chart
      • Activity 2: Distribution plots: Histogram, density, and box plot
      • Activity 3: Relation plots: Scatter and bubble plot
      • Activity 4: Composition plots: Pie chart, stacked bar chart, stacked area chart, and Venn diagram
    • Topic 4: Legends
      • Activity 1: Adding a legend to your plot
    • Topic 5: Layouts
      • Activity 1: Displaying multiple plots in one figure
    • Topic 6: Images
      • Activity 1: Displaying a single and multiple images
    • Topic 7: Writing mathematical expressions
  • Lesson 5: Simplification through Seaborn

    • Topic 1: From Matplotlib to Seaborn
    • Topic 2: Controlling figure aesthetics
      • Activity 1: Line plots with custom aesthetics
      • Activity 2: Violin plots
    • Topic 3: Colour palettes
      • Activity 1: Heatmaps with custom colour palettes
    • Topic 4: Multi-plot grids
      • Activity 1: Scatter multi-plot
      • Activity 2: Correlogram
  • Lesson 6: Plotting Geospatial Data

    • Topic 1: Geoplotlib basics
      • Activity: Plotting geospatial data on a map
      • Activity: Choropleth plot
    • Topic 2: Tiles providers
    • Topic 3: Custom layers
      • Activity: Working with custom layers
  • Lesson 7: Making Things Interactive with Bokeh

    • Topic 1: Bokeh basics
    • Topic 2: Adding Widgets
      • Activity 1: Extending plots with widgets
    • Topic 3: Animated Plots
      • Activity 1: Animating information
  • Lesson 8: Combining What We've Learned

    • Topic 1: Recap
    • Topic 2: Free exercise
      • Activity 1: Given a new dataset, the students have to decide in small groups which data they want to visualise and which plot is best for the task.
      • Activity 2: Each group gives a quick presentation about their visualisations.
  • Lesson 9: Application in Real Life and Conclusion of Course

    • Applying Your Knowledge to a Real-life Data Wrangling Task
    • An Extension to Data Wrangling


Data Visualisation with Python FAQs

  • Can I take this data science course online?

    Yes! We know your busy work schedule may prevent you from getting to one of our classrooms which is why we offer convenient online training to meet your needs wherever you want, including online training.

Online (AnyWare)
Online (AnyWare)
Online (AnyWare)
Ottawa / Online (AnyWare)
Herndon, VA / Online (AnyWare)
Ottawa / Online (AnyWare)
Why do we require your location?

It allows us to direct your request to the appropriate Customer Care team.

Hur föredrar du att bli kontaktad:

Please Choose a Language

Canada - English

Canada - Français