Introduction to Julia Programming for Artificial Intelligence Training

Nivå: Intermediate

As machine learning and artificial intelligence algorithms grow more sophisticated, the need for a high-performance development environment grows greater and greater. Julia is a programming language designed to feel like a comfortable scripting environment, like Python, but able to deliver the high performance of fully compiled languages like C and Fortran. In this course we introduce the fundamentals of coding in Julia, always with an eye towards programming techniques currently finding application in cutting-edge machine learning and artificial intelligence.

Nyckelfunktioner:

  • After-course instructor coaching included
  • Learning Tree end-of-course exam included

Du kommer lära dig att:

  • Craft efficient code in the high-performance programming language, Julia
  • Create machine-learning models in Julia
  • Understand the vector and matrix methods common to all neutral network models
  • Interact with other AI platforms, like PyTorch and TensorFlow

Välj den utbildningsform som passar dig bäst

LIVE, LÄRARLEDD

I klass & Live, Online-utbildning

  • 3-day instructor-led training course
  • After-course instructor coaching included
  • Learning Tree end-of-course exam included

UTBILDNING PÅ DIN ARBETSPLATS

Teamträning

  • Använd denna eller någon annan utbildning i ditt företag
  • Fullskalig programutveckling
  • Levereras när, var och hur du vill
  • Blandade utbildningsmodellerSkräddarsytt innehåll
  • Coaching av ett expertteam

Anpassa kurs och innehåll efter teamets behov

Kontakta oss

Utveckla dig och ditt team med anpassade eller öppna kurser alternativt e-learning

Learning Tree erbjuder kundanpassad utbildning hos er, öppna kurser i Stockholm, London eller Washington, möjlighet att delta via våra Anywhere centers (Malmö, Göteborg, Linköping, Stockholm eller Borlänge) eller olika former av e-learning med lärarstöd. Läs mer på www.learningtree.se/priser .

I klass & Live, Online-utbildning

Note: This course runs for 3 dagar

  • 22 - 24 feb 9:00 - 16:30 GMT Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 17 - 19 maj 9:00 - 16:30 BST Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 16 - 18 aug 9:00 - 16:30 BST Online (AnyWare) Online (AnyWare) Boka Din Kursplats

  • 11 - 13 maj 15:00 - 22:30 CCST Herndon, VA / Online (AnyWare) Herndon, VA / Online (AnyWare) Boka Din Kursplats

  • 10 - 12 aug 15:00 - 22:30 CCST Herndon, VA / Online (AnyWare) Herndon, VA / Online (AnyWare) Boka Din Kursplats

Kurs med startgaranti

När du ser symbolen för “Guaranteed to Run” vid ett kurstillfälle vet du att kursen blir av. Garanterat.

Important Julia Programming Training Information

  • Prerequisites

    Attendees must have programming experience.
  • Exam Information

    Attendees will have the opportunity to take the Learning Tree exam upon completion.

Julia Programming Training Outline

  • Chapter 1 – Introduction and Overview

    • What is Julia?
    • LLVM
    • Installing and Using Julia
    • The Julia REPL
      • semicolon works as in MATLAB
    • Julia IDEs
      • Installing the Julia kernel for Jupyter notebooks
      • VS Code
    • Hands-On Exercise 1.1
  • Chapter 2 – Fundamentals of the Julia Language

    • Variables and Types in Julia
      • Integers
        • No overflow checking
      • Floats
      • Strings
        • Characters versus strings
        • Strings are assumed to be UTF-8
        • print
        • println
        • formatted printing
      • Dates
    • Using Latex Symbols
    • Best Practises for Datatypes
    • Best practise:
      • Ensure compiler can correctly deduce type
    • Hands-On Exercise 2.1
      • Julia DataFrames
      • Interoperating with Pandas DataFrames
    • Julia Operators and Functions
    • Functions and operators
      • pipe operator
      • Function composition
      • Tuple arguments are immutable
      • Array arguments are mutable
      • Variable number of arguments
      • Broadcasting a function
      • Anonymous functions
    • Contents - Multiple Dispatch
    • Multiple Dispatch
      • Function Signatures
    • Hands-On Exercise 2.2
      • Julia Macros
    • Hands-On Exercise 2.3
  • Chapter 3 - Julia Arrays

    • Arrays
      • Julia matrices are in column-major order
      • Linear and Cartesian indexes
      • EachIndex operator
      • Arrays with custom indices
    • Hands-On Exercise 3.1
      • Applications of Matrices
      • Special Array and Matrix types
      • Introduction to Matrices in Artificial Intelligence
    • Hands-On Exercise 3.2
      • Introductory numerical analysis
      • Matrices – Norms and Conditioning
      • Differential Equations
    • Hands-On Exercise 3.3
  • Chapter 4 – Input and Output

    • FileIO Package
    • Standard File Types
    • Implementing Loaders and Saves
    • Hands-On Exercise 4.1
      • Graphics Output
      • Plotting from the Julia REPL
      • Plotting in Julia Notebooks
    • Hands-On Exercise 4.2
  • Chapter 5 – Putting machine learning theory into practise

    • Statistical modelling
    • Machine Learning
    • Hands-On Exercise 5.1
  • Chapter 6 - Neural Networks with Julia

    • Neural Network Basics in Julia
    • Hands-On Exercise 6.1
    • Advanced Neural Network Libraries in Julia
    • Performance Tuning for Neural Networks
    • Quantization of Neural Networks
    • Hands-On Exercise 6.2
  • Chapter 7 – Debugging, Profiling, and High-Performance Julia

    • The Julia Debugger
    • High Performance Julia
    • Principles of high-performance programming
    • Profiling Julia code
    • Hands-On Exercise 7.1
      • Parallel Processing
      • Multithreading
      • Multiprocessing
      • Distributed processing
    • Hands-On Exercise 7.2
  • Chapter 8 – Interoperating with other Artificial Intelligence Platforms

    • Julia with TensorFlow and PyTorch
    • ONNX
    • Creating a computer vision system
    • Picking a model from the “zoo”
    • ResNet
    • Hands-On Exercise 8.1
  • Chapter 9 – Course Summary

Teamträning

Julia Programming Training FAQs

  • I am new to programming, what experience do I need going into this course?

    This course introduces Julia but assumes the student has experience with some programming language such as Python, C#, or Java.
  • I am a manager trying to develop better knowledge of the Julia programming language, is this the right course for me?

    This course explores some of the more technical aspects of neural networks and is probably not suitable for managers and non-technical students.
  • I am a developer. Can I take this class?

    Yes! This course is designed for developers, and programmers, who wish to delve deeper into neural networks and AI.
  • I’m a developer who wishes to apply existing neural network architectures. Is this class suitable for me?

    Not likely. Developers wishing only to apply existing neural network architectures might be better served by a course in PyTorch or TensorFlow.
Online (AnyWare)
Online (AnyWare)
Online (AnyWare)
Herndon, VA / Online (AnyWare)
Herndon, VA / Online (AnyWare)
Why do we require your location?

It allows us to direct your request to the appropriate Customer Care team.

Hur föredrar du att bli kontaktad:

Please Choose a Language

Canada - English

Canada - Français